Monday 4 December 2017

Przykładowy przykład z czterema okresami przemieszczania się do średniej prognozy


Przykłady prognozowania obliczeń A.1 Metody obliczania prognozy Dostępne są 12 metod obliczania prognoz. Większość z tych metod zapewnia ograniczoną kontrolę nad użytkownikami. Na przykład można określić wagę umieszczoną na ostatnich danych historycznych lub zakresach danych historycznych używanych w obliczeniach. Następujące przykłady przedstawiają procedurę obliczania dla każdej z dostępnych metod prognozowania, biorąc pod uwagę identyczny zbiór danych historycznych. Poniższe przykłady wykorzystują takie same dane o sprzedaży w 2004 i 2005 roku, aby uzyskać prognozę sprzedaży w 2006 roku. Obok przewidywanej kalkulacji, każdy przykład zawiera symulowaną prognozę dla okresu trzymiesięcznego okresu rozliczeniowego (opcja 193), która jest następnie wykorzystywana do procentu dokładności i średnich odchyleń bezwzględnych (rzeczywiste obroty w porównaniu z prognozą symulowaną). A.2 Prognoza wyników Kryteria W zależności od wyboru opcji przetwarzania oraz trendów i wzorców istniejących w danych o sprzedaży, niektóre metody prognozowania będą działały lepiej niż inne dla danego zbioru danych historycznych. Metoda prognozowania odpowiednia dla jednego produktu może być nieodpowiednia dla innego produktu. Jest mało prawdopodobne, aby metoda prognozowania zapewniająca dobre wyniki w jednym etapie cyklu życia produktu pozostanie właściwa przez cały cykl życia. Można wybrać jedną z dwóch metod oceny bieżącej skuteczności metod prognozowania. Są to średnie odchylenia bezwzględne (MAD) i procent dokładności (POA). Obie te metody oceny skuteczności wymagają historycznych danych dotyczących sprzedaży dla określonego przez użytkownika okresu. Ten okres czasu nazywa się okresem holdout lub period best fit (PBF). Dane w tym okresie są wykorzystywane jako podstawa do rekomendowania, które z metod prognozowania będą wykorzystywane przy przygotowywaniu kolejnej prognozy prognozy. To zalecenie jest specyficzne dla każdego produktu i może się zmieniać z jednego generowania prognozy do następnego. Obydwa prognozowane metody oceny skuteczności są przedstawione na stronach następujących przykładów dwunastu metod prognozowania. A.3 Metoda 1 - Określony Procent W porównaniu z poprzednim rokiem Ta metoda pomnożona przez dane z poprzedniego roku o współczynnik określony przez użytkownika, na przykład o 1,10 dla 10 lub o 0,97 dla trzech obniżek. Wymagana historia sprzedaży: rok do obliczenia prognozy plus określona liczba okresów czasu dla oceny przewidywanych wyników (opcja 19). A.4.1 Prognoza Kalkulacja Zakres historii sprzedaży do wykorzystania przy obliczaniu współczynnika wzrostu (opcja przetwarzania 2a) 3 w tym przykładzie. Suma trzech miesięcy 2005 r .: 114 119 137 370 Suma tych samych trzech miesięcy w roku poprzednim: 123 139 133 395 Obliczony współczynnik 370395 0,9367 Oblicz prognozy: styczeń 2005 r. Sprzedaż 128 0,9367 119,8036 lub około 120 lutego 2005 r. Sprzedaż 117 0.9367 109.5939 lub około 110 marca 2005 r. Sprzedaż 115 0.9367 107.7205 lub około 108 A.4.2 Symulowany obliczenia prognozy Suma trzech miesięcy 2005 r. Przed okresem utrzymywania rezerwy (lipiec, sierpień, wrzesień): 129 140 131 400 Suma tych samych trzech miesięcy dla poprzedni rok: 141 128 118 387 Obliczony współczynnik 400387 1.033591731 Oblicz prognozę symulacji: październik 2004 r. sprzedaż 123 1.033591731 127.13178 listopad 2004 r. sprzedaż 139 1.033591731 143.66925 grudzień 2004 r. sprzedaż 133 1.033591731 137.4677 A.4.3 Procent dokładności Obliczenia POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Średnia obliczalność odchylenia bezwzględnego MAD (127.13178 - 114 143.66925 - 119 137.4677 - 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metoda 3 - W ubiegłym roku do tego roku Ta metoda kopiuje dane sprzedaży z poprzedniego roku na następny rok. Wymagana historia sprzedaży: rok do obliczenia prognozy wraz z liczbą okresów czasu wyznaczonych do oceny prognozy (opcja 19). A.6.1 Prognoza Obliczanie Liczba okresów, które należy uwzględnić w średniej (opcja przetwarzania 4a) 3 w tym przykładzie Dla każdego miesiąca prognozy średnie dane z poprzednich trzech miesięcy. Prognoza stycznia: 114 119 137 370, 370 3 123.333 lub 123 lutego prognoza: 119 137 123 379, 379 3 126.333 lub 126 Marzec prognoza: 137 123 126 379, 386 3 128.667 lub 129 A.6.2 Symulowana prognoza Obliczanie sprzedaży październik 2005 (129 140 133) 3 133.3333 listopad 2005 sprzedaż (140 131 114) 3 128.3333 grudzień 2005 sprzedaż (131 114 119) 3 121.3333 A.6.3 Procent dokładności Obliczenia POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Średni bezwzględny Obliczanie odchylenia MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metoda 5 - Przybliżenie liniowe Zbliżenie liniowe oblicza tendencję opartą na dwóch punktach historii historii sprzedaży. Te dwa punkty definiują prostą linię trendu przewidzianą w przyszłości. Użyj tej metody z ostrożnością, ponieważ długie prognozy są wykorzystywane przez małe zmiany w zaledwie dwóch punktach danych. Wymagana historia sprzedaży: liczba okresów uwzględnienia w regresji (opcja przetwarzania 5a) plus 1 plus liczba okresów oceny wyników prognozy (opcja 19). A.8.1 Prognoza Obliczanie Liczba okresów uwzględnienia w regresji (opcja przetwarzania 6a) 3 w tym przykładzie Dla każdego miesiąca prognozy należy dodać wzrost lub spadek w określonych przedziałach przed okresem holdout poprzedniego okresu. Średnia z poprzednich trzech miesięcy (114 119 137) 3 123.3333 Podsumowanie ostatnich trzech miesięcy z uwzględnieniem ciężaru (114 1) (119 2) (137 3) 763 Różnica między wartościami 763 - 123.3333 (1 2 3) 23 Stosunek ( 12 22 32) - 2 3 14 - 12 2 Wartość1 RóżnicaRatio 232 11.5 Wartość2 Wartość średnia - wartość1 123.3333 - 11.5 2 100.3333 Prognoza (1 n) wartość value1 4 4 11.5 100.3333 146.333 lub 146 Prognoza 5 11.5 100.3333 157.8333 lub 158 Prognoza 6 11.5 100.3333 169.3333 lub 169 A.8.2 Symulowana prognoza Prognoza sprzedaży października 2004: Średnia z poprzednich trzech miesięcy (129 140 131) 3 133.3333 Podsumowanie ostatnich trzech miesięcy z uwzględnieniem ciężaru (129 1) (140 2) (131 3) 802 Różnica między Wartości 802 - 133.3333 (1 2 3) 2 Stosunek (12 22 32) - 2 3 14 - 12 2 Wartość1 RóżnicaRozwój 22 1 Wartość2 Średnia - wartość1 133.3333 - 1 2 131.3333 Prognoza (1 n) Wartość1 Wartość2 4 1 131.3333 135.3333 Listopad 2004 obroty Średnia z poprzednich trzech miesięcy (140 131 114) 3 128.3333 Podsumowanie ostatnich trzech miesięcy z uwzględnieniem ciężaru (140 1) (131 2) (114 3) 744 Różnica między wartościami 744 - 128.3333 (1 2 3) -25.9999 Wartość1 RóżnicaRatio -25.99992 -12.9999 Wartość2 Wskaźnik średniej wartości 1 128.3333 - (-12.9999) 2 154.3333 Prognoza 4 -12.9999 154.3333 102.3333 Sprzedaż w grudniu 2004 średnia z poprzednich trzech miesięcy (131 114 119) 3 121.3333 Podsumowanie ostatnich trzech miesięcy z uwzględnieniem ciężaru ( 131 1) (114 2) (119 3) 716 Różnica między wartościami 716 - 121.3333 (1 2 3) -11.9999 Wartość1 RóżnicaRatio -11.99992 -5.9999 Wartość2 Wartość średnia - wartość1 121.3333 - (-5.9999) 2 133.3333 Prognoza 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Procent dokładności Obliczenie POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Średni odchylenie bezwzględne MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Metoda 7 - Secon d Approximation (regresja) Regresja liniowa określa wartości dla a i b w projekcie prognozy Y a bX w celu dopasowania prostej linii do danych historii sprzedaży. Podejście drugiego stopnia jest podobne. Jednakże ta metoda określa wartości dla a, b i c w projekcie prognozy Y a bX cX2 w celu dopasowania krzywej do historii historii sprzedaży. Ta metoda może być użyteczna, gdy produkt znajduje się w przejściu między etapami cyklu życiowego. Na przykład, gdy nowy produkt przejdzie od etapu wprowadzania do etapu wzrostu, tendencja sprzedaży może przyspieszyć. Z powodu drugiego rzędu, prognoza może szybko podchodzić do nieskończoności lub spada do zera (w zależności od tego, czy współczynnik c jest dodatni czy ujemny). Dlatego ta metoda jest użyteczna tylko w krótkim okresie czasu. Specyfikacja prognozy: Wzory określają a, b i c, aby dopasować krzywą dokładnie do trzech punktów. W opcji przetwarzania 7a określasz n, liczbę okresów gromadzenia danych w każdym z trzech punktów. W tym przykładzie n 3. W związku z tym faktyczne dane o sprzedaży od kwietnia do czerwca są połączone w pierwszym punkcie, Q1. Od lipca do września dodaje się razem, aby utworzyć Q2, a od października do grudnia suma do trzeciego kwartału. Krzywa zostanie dopasowana do trzech wartości Q1, Q2 i Q3. Wymagana historia sprzedaży: 3 n okresy obliczania prognozy plus liczba okresów potrzebnych do oceny prognozy (PBF). Liczba okresów uwzględnienia (opcja przetwarzania 7a) 3 w tym przykładzie Użyj poprzednich (3 n) miesięcy w blokach trzymiesięcznych: Q1 (kwiecień - czerwiec) 125 122 137 384 Q2 (lip - wrz) 129 140 131 400 Q3 ( Oct-Dec) 114 119 137 370 Następny krok polega na obliczeniu trzech współczynników a, b i c do wykorzystania w projekcie prognozowania Y a bX cX2 (1) Q1 a bX cX2 (gdzie X1) abc (2) Q2 a równanie (1) z równania (2) jest równe (2), a b c c2 (gdzie X 2) a 2b 4c (3) Q3 a bX cX2 (gdzie X3) a 3b 9c Rozwiąż trzy równania jednocześnie, i rozwiązać dla b (2) - (1) Q2 - Q1 b 3c Zamień to równanie dla b na równanie (3) (3) Q3 a 3 (Q2-Q1) - 3c c Na koniec zastąpić te równania dla aib (Q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Metoda przybliżania drugiego stopnia oblicza a, b i c następująco: Q3 (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 (370 - 400) -23 b (Q2-Q1) -3c (400-384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 styczeń do marca Prognoza marcowa (X4): (322 340 - 368) 3 2943 98 za okres od kwietnia do czerwca prognoza (X5): (322 425 - 575) 3 57.333 lub 57 za okres od lipca do września (X6): (322 510 - 828) 3 1,33 lub 1 za okres od października do grudnia (X7) (322 595 - 11273 -70 A.9.2 Symulowana prognoza Obliczanie października, listopada i grudnia 2004 r. SprzedaŜ: Q1 (Jan - Mar) 360 Q2 (kwiecień - czerwiec) 384 Q3 (lip - wrzesień) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Procent dokładności Obliczanie POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Średnia obliczalność odchylenia bezwzględnego MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Metoda 8 - Metoda elastyczna Metoda elastyczna (Procent powyżej n miesięcy poprzednich) jest podobna do metody 1, w procentach w zeszłym roku. Obydwa metody pomnożają dane o sprzedaży od poprzedniego okresu przez określony przez użytkownika czynnik, a następnie projektują, które skutkują w przyszłości. Procent oparty na ostatnim rocznym projekcji opiera się na danych z tego samego okresu w roku poprzednim. Metoda Elastyczność dodaje możliwość określania innego okresu poza tym samym okresem roku ubiegłego, co podstawę obliczeń. Mnożnik. Na przykład określ opcję 1.15 w opcji przetwarzania 8b, aby zwiększyć poprzednie dane dotyczące historii sprzedaży o 15. Okres bazowy. Na przykład n 3 spowoduje, że pierwsza prognoza zostanie oparta na danych o sprzedaży w październiku 2005 roku. Minimalna historia sprzedaży: określona przez użytkownika liczba okresów powrotu do okresu bazowego plus liczba okresów potrzebnych do oceny prognozy ( PBF). A.10.4 Średnia obliczalność odchylenia bezwzględnego MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Metoda 9 - średnia ważona Średnia Średnia Średnia Średnia (WMA) jest podobna do metody 4, Moving Average (MA). Jednak przy średniej ważonej ruchomej można przypisać nierówne wagi do danych historycznych. Metoda oblicza średnią ważoną z ostatnich historii sprzedaży, aby osiągnąć prognozę na najbliższy okres. Dalsze dane są zwykle przypisywane większej wagi niż starsze dane, dzięki czemu WMA reaguje na zmiany poziomu sprzedaży. Jednak prognozowane nastawienia i systematyczne błędy nadal występują, gdy historia sprzedaży produktów wykazuje silny trend lub sezonowe wzorce. Metoda ta lepiej sprawdza się w przypadku prognoz krótkoterminowych produktów dojrzałych, a nie produktów w fazie wzrostu lub starzenia się cyklu życiowego. n liczba okresów historii sprzedaży do wykorzystania w kalkulacji prognozy. Na przykład określić opcję n 3 w opcji przetwarzania 9a, aby wykorzystać trzy ostatnie okresy jako podstawę projekcji do następnego okresu. Duża wartość n (np. 12) wymaga większej historii sprzedaży. Prowadzi to do stabilnej prognozy, ale będzie powolna rozpoznawać zmiany poziomu sprzedaży. Z drugiej strony mała wartość dla n (np. 3) reaguje szybciej na zmiany poziomu sprzedaży, ale prognoza może wahać się tak bardzo, że produkcja nie może odpowiadać na zmiany. Masa przypisana do każdego z historycznych okresów danych. Przyznane ciężary muszą wynosić 1,00. Na przykład, gdy n 3, przypisać ciężary 0,6, 0,3 i 0,1, przy czym najnowsze dane otrzymują największą wagę. Minimalna wymagana historia sprzedaży: n plus liczba okresów potrzebnych do oceny prognozy (PBF). MAD (133.5 - 114 121.7 - 119 118.7 - 137) 3 13.5 A.12 Metoda 10 - Wygładzanie liniowe Ta metoda jest podobna do metody 9, ważonej średniej przemieszczania (WMA). Jednak zamiast arbitralnie przyporządkować odważniki do danych historycznych, formułę stosuje się do przypisania odważników, które spadają liniowo i sumują się do 1,00. Metoda następnie oblicza średnią ważoną z ostatnich historii sprzedaży, aby osiągnąć prognozę na krótką metę. Podobnie jak w przypadku wszystkich liniowych średnich kroczących technik prognozowania, prognozowane nastawienia i błędy systematyczne występują, jeśli historia sprzedaży produktów wykazuje silny trend lub sezonowe wzorce. Metoda ta lepiej sprawdza się w przypadku prognoz krótkoterminowych produktów dojrzałych, a nie produktów w fazie wzrostu lub starzenia się cyklu życiowego. n liczba okresów historii sprzedaży do wykorzystania w kalkulacji prognozy. Jest to określone w opcji przetwarzania 10a. Na przykład podaj n 3 w opcji przetwarzania 10b, aby wykorzystać najnowsze trzy okresy jako podstawę projekcji do następnego okresu. System automatycznie przypisa wagi do danych historycznych, które spadają liniowo i wynoszą 1,00. Na przykład, gdy n 3, system przypisze wagi 0,5, 0,3333 i 0,1, przy czym najstarsze dane otrzymują największą wagę. Minimalna wymagana historia sprzedaży: n plus liczba okresów potrzebnych do oceny prognozy (PBF). A.12.1 Prognoza Obliczanie Liczba okresów uwzględniających średnią wygładzania (opcja przetwarzania 10a) 3 w tym przykładzie Stosunek dla jednego okresu poprzedzającego 3 (n2 n) 2 3 (32 3) 2 36 0,5 Współczynnik dla dwóch okresów poprzedzających 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Współczynnik dla trzech okresów poprzedzających 1 (n 2 n) 2 1 (32 3) 2 16 0.1666 .. Prognoza stycznia: 137 0.5 119 13 114 16 127.16 lub 127 Luty prognoza: 127 0.5 137 13 119 16 129 Prognoza marcowa: 129 0,5 127 13 137 16 129,666 lub 130 A.12.2 Symulowana prognoza Obliczenia Sprzedaż w październiku 2004 r. 129 16 140 26 131 36 133,6666 Sprzedaż w listopadzie 2004 140 16 131 26 114 36 124 grudnia 2004 sprzedaż 131 16 114 26 119 36 119.3333 A.12.3 Procent dokładności Obliczenie POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Średni odchylenie bezwzględne MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Metoda 11 - Wyrównywanie wykładnicze Metoda ta jest podobna do metody 10, Wygładzanie liniowe. W wyrównywaniu liniowym system przypisuje wagi danych historycznych, które spadają liniowo. W wyrównywaniu wykładniczym system przypisuje odważniki, które rozkładają się wykładniczo. Wyrażenie predykcyjne równa jest: Prognoza a (poprzednia faktyczna sprzedaż) (1 - a) Poprzednia prognoza Prognoza jest średnią ważoną rzeczywistej sprzedaży z poprzedniego okresu i prognozy z poprzedniego okresu. a jest wagą stosowaną do rzeczywistej sprzedaży za poprzedni okres. (1 - a) jest wagą zastosowaną do prognozy dla poprzedniego okresu. Prawidłowe wartości w zakresie od 0 do 1, i zwykle mieszczą się w zakresie od 0,1 do 0,4. Suma ciężarów wynosi 1,00. a (1 - a) 1 Należy przypisać wartość dla stałej wygładzania, a. Jeśli nie ustawisz wartości dla stałej wygładzania, system oblicza założoną wartość w oparciu o liczbę okresów historii sprzedaży określoną w opcji przetwarzania 11a. stała wygładzania używana do obliczania średniej wygładzonej dla ogólnego poziomu lub wielkości sprzedaży. Poprawne wartości w zakresie od 0 do 1. n zakresu danych historii sprzedaży, które mają zostać uwzględnione w obliczeniach. Ogólnie, jeden rok danych dotyczących historii sprzedaży jest wystarczający, aby oszacować ogólny poziom sprzedaży. W tym przykładzie wybrano małą wartość dla n (n 3) w celu zredukowania ręcznych obliczeń wymaganych do sprawdzenia wyników. Wyrównywanie wykładnicze może wygenerować prognozę na podstawie zaledwie jednego historycznego punktu danych. Minimalna wymagana historia sprzedaży: n plus liczba okresów potrzebnych do oceny prognozy (PBF). A.13.1 Prognoza Obliczanie Liczba okresów uwzględnienia w średniej wygładzania (opcja przetwarzania 11a) 3 oraz współczynnik alfa (opcja przetwarzania 11b) w tym przykładzie jest pustym elementem najstarszych danych handlowych 2 (11) lub 1, gdy alfa jest określony współczynnik 2 najstarszych danych handlowych 2 (12) lub alfa, gdy alfa jest określony jako współczynnik trzeciej najstarszej sprzedaży 2 (13) lub alfa, gdy alfa jest określony współczynnikiem dla ostatnich danych sprzedaży 2 (1n) , lub alfa, gdy alfa jest określony listopad Sm. Średnia a (Październik Rzeczywisty) (1 - a) Październik Sm. Średnia 1 114 0 0 114 grudzień Sm. Średnia a (Listopad Rzeczywisty) (1 - a) Listopad Sm. Średnia 23 119 13 114 117.3333 Styczeń Prognoza a (grudzień Aktualne) (1 - a) Grudzień Sm. Średnia 24 137 24 117.3333 127.16665 lub 127 Luty Prognoza Styczeń Prognoza 127 Marzec Prognoza Styczeń Prognoza 127 A.13.2 Symulowana Prognoza Obliczanie Lipiec 2004 Sm. Średnia 22 129 129 sierpnia Sm. Średnia 23 140 13 129 136.3333 Wrzesień Sm. Średnia 24 131 24 136.3333 133.6666 Październik, 2004 sprzedaŜ Wrz. Sm. Średnia 133.6666 Sierpień, 2004 Sm. Średnia 22 140 140 września Sm. Średnia 23 131 13 140 134 października Sm. Średnia 24 114 24 134 124 listopad, 2004 sprzedaże Wt. Średnia 124 września 2004 Sm. Średnia 22 131 131 października Sm. Średnia 23 114 13 131 119.6666 Listopad Sm. Średnia 24 119 24 119.6666 119.3333 Sprzedaż w grudniu 2004 r. Wrz. Średnia 119.3333 A.13.3 Procent obliczenia dokładności POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Średnia obliczalność odchylenia bezwzględnego MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Metoda 12 - wyrównywanie wykładnicze z tendencją i sezonowością Ta metoda jest podobna do metody 11 Wyrównywanie wykładnicze, w wyniku której obliczana jest średnia wygładzona. Metoda 12 zawiera jednak również termin w równaniu prognozującym do wyliczenia wygładzonej tendencji. Prognoza składa się ze średniej wygładzonej dostosowanej do tendencji liniowej. Jeśli określono w opcji przetwarzania, prognoza jest również dostosowywana do sezonowości. stała wygładzania używana do obliczania średniej wygładzonej dla ogólnego poziomu lub wielkości sprzedaży. Prawidłowe wartości zakresu alfa wynoszą od 0 do 1. b stała wygładzania używana do obliczania średniej wygładzonej dla składnika tendencji prognozy. Prawidłowe wartości dla zakresu beta od 0 do 1. Niezależnie od tego, czy indeks sezonowy jest stosowany do prognozy a i b. Nie muszą dodawać do 1.0. Minimalna wymagana historia sprzedaży: dwa lata plus liczba okresów potrzebnych do oceny prognozy (PBF). Metoda 12 wykorzystuje dwa równania wyrównania wykładniczego i jedną prostą średnią do obliczania średniej wygładzonej, wygładzonej tendencji i prostego średniego czynnika sezonowego. A.14.1 Kalkulacja prognozy A) Wyraźna geometrycznie średnia wartość MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Ocena prognoz Możesz wybrać metody prognozowania, aby wygenerować aż dwanaście prognoz dla każdego produktu. Każda metoda prognozowania prawdopodobnie utworzy nieco inną projekcję. Gdy przewidziano tysiące produktów, trudno jest podjąć subiektywną decyzję co do tego, które z prognoz użyć w planach każdego z produktów. System automatycznie ocenia wydajność każdego wybranego sposobu prognozowania i dla każdego z produktów. Możesz wybrać jeden z dwóch kryteriów wydajności, średniego odchylenia bezwzględnego (MAD) i procentu dokładności (POA). MAD jest miarą błędu prognozy. POA jest miarą przewidywanego nastawienia. Obie te techniki oceny skuteczności wymagają rzeczywistych danych dotyczących historii sprzedaży dla określonego przez użytkownika okresu. Ten okres najnowszej historii zwany jest okresem holdout lub period best fit (PBF). Aby zmierzyć skuteczność metody prognozowania, użyj prognozowych formuł do symulacji prognozy na historyczny okres utrzymywania rezerwy. Zwykle występują różnice między rzeczywistymi danymi dotyczącymi sprzedaży a symulowaną prognozą dla okresu utrzymywania rezerwy. Gdy wybrano wiele metod prognozy, ten sam proces występuje dla każdej metody. Wiele prognoz jest obliczanych w okresie holdout i porównywane do znanych historii sprzedaży w tym samym okresie czasu. Zalecana jest metoda prognozowania, która najlepiej pasuje pomiędzy prognozą a rzeczywistą sprzedażą w okresie zawieszenia, do wykorzystania w planach. To zalecenie jest specyficzne dla każdego produktu i może zmieniać się z jednego generowania prognozy na drugie. A.16 Średnie odchylenie bezwzględne (MAD) MAD jest średnią (lub średnią) wartości bezwzględnych (lub wielkości) odchyleń (lub błędów) pomiędzy rzeczywistymi i prognozowanymi danymi. MAD jest miarą średniej wielkości błędów oczekiwanych, biorąc pod uwagę metodę prognozowania i historię danych. Ponieważ w obliczaniu są stosowane wartości bezwzględne, błędy dodatnie nie eliminują błędów negatywnych. W porównaniu z kilkoma metodami prognozowania, ten z najmniejszym MAD okazał się być najbardziej niezawodny dla tego produktu w tym okresie utrzymywania. Jeśli prognoza jest bezstronna, a błędy są rozproszone, istnieje prosty związek matematyczny pomiędzy MAD a dwoma innymi wspólnymi miarami dystrybucji, odchylenia standardowego i średniego kwadratu: A.16.1 Procent dokładności (POA) Procent dokładności (POA) jest miara prognozowania. Kiedy prognozy są zbyt wysokie, gromadzone są zapasy i koszty zapasów wzrastają. Kiedy prognozy są konsekwentnie dwa niskie, zapasy są konsumowane, a obsługa klienta spada. Prognoza, która wynosi 10 jednostek za niska, a następnie 8 jednostek za wysoka, a następnie 2 jednostki za wysoka, byłoby nieprzewidywalną prognozą. Błąd dodatni wynoszący 10 zostaje anulowany przez błędy ujemne w wysokości 8 i 2. Błąd Stan faktyczny - prognoza Kiedy produkt można przechowywać w magazynie, a gdy prognoza jest bezstronna, można zastosować niewielką ilość zapasów bezpieczeństwa w celu buforowania błędów. W tej sytuacji nie jest tak ważne, aby wyeliminować błędy prognozy, ponieważ ma generować nieprzewidywalne prognozy. Jednakże w przemyśle usługowym powyższa sytuacja byłaby postrzegana jako trzy błędy. W pierwszym okresie służby byłyby niewystarczające, a następnie przez wiele kolejnych okresów. W usługach, wielkość błędów prognozy jest zazwyczaj ważniejsza niż przewidywana tendencja. Podsumowanie w okresie holdoutu pozwala na pozytywne błędy w celu wyeliminowania negatywnych błędów. Gdy całkowita sprzedaż przekracza całkowitą prognozę sprzedaży, współczynnik ten jest większy niż 100. Oczywiście, nie da się dokładnie określić dokładności 100. Jeśli prognoza jest bezstronna, współczynnik POA wynosi 100. Dlatego też bardziej pożądane jest 95 dokładne, niż dokładne 110. Kryteria POA wybierają metodę prognozowania, która ma współczynnik POA najbliżej 100. Skryptowanie na tej stronie ulepsza nawigację treści, ale w żaden sposób nie zmienia zawartości. Zrozumienie poziomów i metod prognoz Można generować zarówno prognozy szczegółowości (pojedynczych elementów) i prognozy (linia produktów) odzwierciedlające wzorce popytu na produkty. System analizuje sprzedaż w przeszłości w celu obliczania prognoz przy użyciu 12 metod prognozowania. Prognozy zawierają szczegółowe informacje na poziomie pozycji i informacje o wyższym poziomie dotyczące oddziału lub firmy jako całości. 3.1 Prognoza wyników Kryteria W zależności od wyboru opcji przetwarzania oraz trendów i wzorców danych dotyczących sprzedaży, niektóre metody prognozowania osiągają lepsze wyniki niż dane dla danego zbioru danych historycznych. Metoda prognozowania odpowiednia dla jednego produktu może być nieodpowiednia dla innego produktu. Może się okazać, że metoda prognozowania, która zapewnia dobre wyniki w jednym etapie cyklu życia produktu pozostaje właściwa przez cały cykl życia. Możesz wybrać jedną z dwóch metod, aby ocenić bieżącą wydajność metod prognozowania: procent dokładności (POA). Średnie odchylenie bezwzględne (MAD). Obie te metody oceny skuteczności wymagają historycznych danych dotyczących sprzedaży w określonym okresie. Ten okres nazywany jest okresem utrzymywania się lub okresem najlepszego dopasowania. Dane w tym okresie są wykorzystywane jako podstawa do rekomendowania, która metoda prognozowania ma być wykorzystana do realizacji kolejnej prognozy prognozy. Rekomendacja jest specyficzna dla każdego produktu i może zmieniać się z jednego generowania prognozy na następny. 3.1.1 Best Fit System zaleca prognozę najlepszego dopasowania, stosując wybrane metody prognozowania do przeszłej historii zleceń sprzedaży i porównując symulację prognozy z rzeczywistą historią. Kiedy wygenerujesz prognozę najlepszej dopasowania, system porównuje aktualne historie zleceń sprzedaży z prognozami dla określonego przedziału czasu i oblicza, jak dokładnie każda inna metoda prognozowania przewidywała sprzedaż. Następnie system zaleca najbardziej dokładną prognozę jako najlepsze dopasowanie. Ta grafika ilustruje najlepsze prognozy dotyczące dopasowania: Rysunek 3-1 Najlepsze dopasowanie System stosuje tę sekwencję kroków w celu określenia najlepszego dopasowania: Użyj każdej określonej metody, aby symulować prognozę okresu holdout. Porównać rzeczywistą sprzedaż z symulowanymi prognozami w okresie utrzymywania. Oblicz POA lub MAD, aby określić, która metoda prognozowania najbardziej pasuje do poprzedniej rzeczywistej sprzedaży. System korzysta z POA lub MAD, w oparciu o wybrane opcje przetwarzania. Zaproponuj najlepszą dopasowaną prognozę w pakiecie POA, który jest najbliżej 100 procent (nad lub pod) lub MAD, który jest najbliżej zera. 3.2 Metody Prognoz JD Edwards EnterpriseOne Forecast Management wykorzystuje 12 metod prognozowania ilościowego i wskazuje, która metoda zapewnia najlepsze dopasowanie do sytuacji prognozowania. W tej sekcji omówiono: Metoda 1: Procent w porównaniu z poprzednim rokiem. Metoda 2: Obliczony procent w ciągu ostatniego roku. Metoda 3: Ostatni rok w tym roku. Metoda 4: Średnia ruchoma. Metoda 5: Zbliżenie liniowe. Metoda 6: Regresja najmniejszych kwadratów. Metoda 7: aproksymacja drugiego stopnia. Metoda 8: Metoda elastyczna. Metoda 9: Średnia ważona ruchoma. Metoda 10: Wygładzanie liniowe. Metoda 11: wyrównywanie wykładnicze. Metoda 12: Wyrównywanie wykładnicze z tendencją i sezonowością. Określ metodę, której chcesz użyć w opcjach przetwarzania programu Forecast Generation (R34650). Większość z tych metod zapewnia ograniczoną kontrolę. Na przykład można określić ciężar umieszczony na ostatnich danych historycznych lub zakres danych daty wykorzystywanych w obliczeniach. Przykłady w przewodniku wskazują procedurę obliczania dla każdego z dostępnych metod prognozowania, biorąc pod uwagę identyczny zestaw danych historycznych. Przykłady metod w podręczniku wykorzystują część lub wszystkie te zbiory danych, które są historycznymi danymi z ostatnich dwóch lat. Prognoza przewiduje się w przyszłym roku. Te dane z historii sprzedaży są stabilne, przy niewielkich sezonowych wzrostach w lipcu i grudniu. Ten wzorzec jest charakterystyczny dla dojrzałego produktu, który może zbliżać się do przestarzałości. 3.2.1 Metoda 1: Procent w porównaniu z poprzednim rokiem Metoda ta wykorzystuje wzorcowanie Procent powyżej ubiegłego roku do pomnożenia każdego okresu prognozy o określony procentowy wzrost lub spadek. Aby prognozować zapotrzebowanie, metoda ta wymaga liczby okresów najlepiej dopasowanych oraz jednego roku sprzedaży. Metoda ta jest przydatna do prognozowania popytu na artykuły sezonowe ze wzrostem lub spadkiem. 3.2.1.1 Przykład: Metoda 1: Procent w porównaniu z rokiem ubiegłym Procent w stosunku do ostatniego roku wzbogaca dane z poprzedniego roku o określony przez Ciebie czynnik, a następnie projekt, który nastąpił w ciągu następnego roku. Ta metoda może być użyteczna w budżetowaniu, aby symulować wpływ określonej dynamiki lub kiedy historia sprzedaży ma znaczący składnik sezonowy. Specyfikacja prognozy: Mnożnik. Na przykład, określ opcję 110 w opcji przetwarzania, aby zwiększyć dane o historii sprzedaży w poprzednim roku o 10 procent. Wymagana historia sprzedaży: rok do obliczenia prognozy plus liczba okresów potrzebnych do oceny przewidywanej wydajności (najlepiej dopasowane okresy). Poniższa tabela zawiera historię używaną do obliczania prognozy: Prognoza lutowa wynosi 117 razy 1.1 128.7 zaokrąglona do 129. Prognoza marcowa wynosi 115 razy 1.1 126.5 zaokrąglona do 127. 3.2.2 Metoda 2: Obliczona wartość procentowa w stosunku do ostatniego roku Metoda ta wykorzystuje Obliczony Odsetek Ponad Formuła ostatniego roku porównania dotychczasowej sprzedaży określonych okresów do sprzedaży z tych samych okresów roku ubiegłego. System określa procentowy wzrost lub spadek, a następnie mnoży każdy okres przez procent w celu określenia prognozy. Aby prognozować zapotrzebowanie, metoda ta wymaga liczby okresów historii zamówień sprzedaży oraz jednego roku sprzedaży. Ta metoda jest przydatna do prognozowania krótkoterminowego zapotrzebowania na produkty sezonowe ze wzrostem lub spadkiem. 3.2.2.1 Przykład: Metoda 2: Obliczona wartość procentowa w ciągu ostatniego roku Obliczenie Procentu w stosunku do ostatniego roku powoduje pomnożenie danych sprzedaży z poprzedniego roku o współczynnik obliczony przez system, a następnie projekty, które doprowadzą do następnego roku. Ta metoda może być użyteczna w przewidywaniu wpływu rozszerzenia ostatniej dynamiki produktu na następny rok przy jednoczesnym zachowaniu sezonowego wzorca występującego w historii sprzedaży. Specyfikacja prognozy: zakres historii sprzedaży używany do obliczania tempa wzrostu. Na przykład, określ liczbę n równą 4 w opcji przetwarzania, aby porównać historię sprzedaży za ostatnie cztery okresy z tymi samymi czterema okresami roku ubiegłego. Użyj obliczonego współczynnika, aby dokonać projekcji na następny rok. Wymagana historia sprzedaży: rok do obliczenia prognozy plus liczba okresów potrzebnych do oceny prognozy (okresy najlepiej dopasowane). This table is history used in the forecast calculation, given n 4: February forecast equals 117 times 0.9766 114.26 rounded to 114. March forecast equals 115 times 0.9766 112.31 rounded to 112. 3.2.3 Method 3: Last Year to This Year This method uses last years sales for the next years forecast. To forecast demand, this method requires the number of periods best fit plus one year of sales order history. This method is useful to forecast demand for mature products with level demand or seasonal demand without a trend. 3.2.3.1 Example: Method 3: Last Year to This Year The Last Year to This Year formula copies sales data from the previous year to the next year. This method might be useful in budgeting to simulate sales at the present level. The product is mature and has no trend over the long run, but a significant seasonal demand pattern might exist. Forecast specifications: None. Required sales history: One year for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals January of last year with a forecast value of 128. February forecast equals February of last year with a forecast value of 117. March forecast equals March of last year with a forecast value of 115. 3.2.4 Method 4: Moving Average This method uses the Moving Average formula to average the specified number of periods to project the next period. You should recalculate it often (monthly, or at least quarterly) to reflect changing demand level. To forecast demand, this method requires the number of periods best fit plus the number of periods of sales order history. This method is useful to forecast demand for mature products without a trend. 3.2.4.1 Example: Method 4: Moving Average Moving Average (MA) is a popular method for averaging the results of recent sales history to determine a projection for the short term. The MA forecast method lags behind trends. Forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products that are in the growth or obsolescence stages of the life cycle. Forecast specifications: n equals the number of periods of sales history to use in the forecast calculation. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. It results in a stable forecast, but is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) is quicker to respond to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. Required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: February forecast equals (114 119 137 125) 4 123.75 rounded to 124. March forecast equals (119 137 125 124) 4 126.25 rounded to 126. 3.2.5 Method 5: Linear Approximation This method uses the Linear Approximation formula to compute a trend from the number of periods of sales order history and to project this trend to the forecast. You should recalculate the trend monthly to detect changes in trends. This method requires the number of periods of best fit plus the number of specified periods of sales order history. This method is useful to forecast demand for new products, or products with consistent positive or negative trends that are not due to seasonal fluctuations. 3.2.5.1 Example: Method 5: Linear Approximation Linear Approximation calculates a trend that is based upon two sales history data points. Those two points define a straight trend line that is projected into the future. Use this method with caution because long range forecasts are leveraged by small changes in just two data points. Forecast specifications: n equals the data point in sales history that is compared to the most recent data point to identify a trend. For example, specify n 4 to use the difference between December (most recent data) and August (four periods before December) as the basis for calculating the trend. Minimum required sales history: n plus 1 plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast December of past year 1 (Trend) which equals 137 (1 times 2) 139. February forecast December of past year 1 (Trend) which equals 137 (2 times 2) 141. March forecast December of past year 1 (Trend) which equals 137 (3 times 2) 143. 3.2.6 Method 6: Least Squares Regression The Least Squares Regression (LSR) method derives an equation describing a straight line relationship between the historical sales data and the passage of time. LSR fits a line to the selected range of data so that the sum of the squares of the differences between the actual sales data points and the regression line are minimized. The forecast is a projection of this straight line into the future. This method requires sales data history for the period that is represented by the number of periods best fit plus the specified number of historical data periods. The minimum requirement is two historical data points. This method is useful to forecast demand when a linear trend is in the data. 3.2.6.1 Example: Method 6: Least Squares Regression Linear Regression, or Least Squares Regression (LSR), is the most popular method for identifying a linear trend in historical sales data. The method calculates the values for a and b to be used in the formula: This equation describes a straight line, where Y represents sales and X represents time. Linear regression is slow to recognize turning points and step function shifts in demand. Linear regression fits a straight line to the data, even when the data is seasonal or better described by a curve. When sales history data follows a curve or has a strong seasonal pattern, forecast bias and systematic errors occur. Forecast specifications: n equals the periods of sales history that will be used in calculating the values for a and b. For example, specify n 4 to use the history from September through December as the basis for the calculations. When data is available, a larger n (such as n 24) would ordinarily be used. LSR defines a line for as few as two data points. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Minimum required sales history: n periods plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: March forecast equals 119.5 (7 times 2.3) 135.6 rounded to 136. 3.2.7 Method 7: Second Degree Approximation To project the forecast, this method uses the Second Degree Approximation formula to plot a curve that is based on the number of periods of sales history. This method requires the number of periods best fit plus the number of periods of sales order history times three. This method is not useful to forecast demand for a long-term period. 3.2.7.1 Example: Method 7: Second Degree Approximation Linear Regression determines values for a and b in the forecast formula Y a b X with the objective of fitting a straight line to the sales history data. Second Degree Approximation is similar, but this method determines values for a, b, and c in the this forecast formula: Y a b X c X 2 The objective of this method is to fit a curve to the sales history data. This method is useful when a product is in the transition between life cycle stages. For example, when a new product moves from introduction to growth stages, the sales trend might accelerate. Because of the second order term, the forecast can quickly approach infinity or drop to zero (depending on whether coefficient c is positive or negative). This method is useful only in the short term. Forecast specifications: the formula find a, b, and c to fit a curve to exactly three points. You specify n, the number of time periods of data to accumulate into each of the three points. In this example, n 3. Actual sales data for April through June is combined into the first point, Q1. July through September are added together to create Q2, and October through December sum to Q3. The curve is fitted to the three values Q1, Q2, and Q3. Required sales history: 3 times n periods for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (May) (Jun) which equals 125 122 137 384 Q2 (Jul) (Aug) (Sep) which equals 140 129 131 400 Q3 (Oct) (Nov) (Dec) which equals 114 119 137 370 The next step involves calculating the three coefficients a, b, and c to be used in the forecasting formula Y a b X c X 2 . Q1, Q2, and Q3 are presented on the graphic, where time is plotted on the horizontal axis. Q1 represents total historical sales for April, May, and June and is plotted at X 1 Q2 corresponds to July through September Q3 corresponds to October through December and Q4 represents January through March. This graphic illustrates the plotting of Q1, Q2, Q3, and Q4 for second degree approximation: Figure 3-2 Plotting Q1, Q2, Q3, and Q4 for second degree approximation Three equations describe the three points on the graph: (1) Q1 a bX cX 2 where X 1(Q1 a b c) (2) Q2 a bX cX 2 where X 2(Q2 a 2b 4c) (3) Q3 a bX cX 2 where X 3(Q3 a 3b 9c) Solve the three equations simultaneously to find b, a, and c: Subtract equation 1 (1) from equation 2 (2) and solve for b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Substitute this equation for b into equation (3): (3) Q3 a 3(Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3(Q2 ndash Q1) Finally, substitute these equations for a and b into equation (1): (1)Q3 ndash 3(Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 The Second Degree Approximation method calculates a, b, and c as follows: a Q3 ndash 3(Q2 ndash Q1) 370 ndash 3(400 ndash 384) 370 ndash 3(16) 322 b (Q2 ndash Q1) ndash3c (400 nda sh 384) ndash (3 times ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 (370 ndash 400) (384 ndash 400) 2 ndash23 This is a calculation of second degree approximation forecast: Y a bX cX 2 322 85X (ndash23) (X 2 ) When X 4, Q4 322 340 ndash 368 294. The forecast equals 294 3 98 per period. When X 5, Q5 322 425 ndash 575 172. The forecast equals 172 3 58.33 rounded to 57 per period. When X 6, Q6 322 510 ndash 828 4. The forecast equals 4 3 1.33 rounded to 1 per period. This is the forecast for next year, Last Year to This Year: 3.2.8 Method 8: Flexible Method This method enables you to select the best fit number of periods of sales order history that starts n months before the forecast start date, and to apply a percentage increase or decrease multiplication factor with which to modify the forecast. This method is similar to Method 1, Percent Over Last Year, except that you can specify the number of periods that you use as the base. Depending on what you select as n, this method requires periods best fit plus the number of periods of sales data that is indicated. This method is useful to forecast demand for a planned trend. 3.2.8.1 Example: Method 8: Flexible Method The Flexible Method (Percent Over n Months Prior) is similar to Method 1, Percent Over Last Year. Both methods multiply sales data from a previous time period by a factor specified by you, and then project that result into the future. In the Percent Over Last Year method, the projection is based on data from the same time period in the previous year. You can also use the Flexible Method to specify a time period, other than the same period in the last year, to use as the basis for the calculations. Multiplication factor. For example, specify 110 in the processing option to increase previous sales history data by 10 percent. Base period. For example, n 4 causes the first forecast to be based on sales data in September of last year. Minimum required sales history: the number of periods back to the base period plus the number of time periods that is required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.9 Method 9: Weighted Moving Average The Weighted Moving Average formula is similar to Method 4, Moving Average formula, because it averages the previous months sales history to project the next months sales history. However, with this formula you can assign weights for each of the prior periods. This method requires the number of weighted periods selected plus the number of periods best fit data. Similar to Moving Average, this method lags behind demand trends, so this method is not recommended for products with strong trends or seasonality. This method is useful to forecast demand for mature products with demand that is relatively level. 3.2.9.1 Example: Method 9: Weighted Moving Average The Weighted Moving Average (WMA) method is similar to Method 4, Moving Average (MA). However, you can assign unequal weights to the historical data when using WMA. The method calculates a weighted average of recent sales history to arrive at a projection for the short term. More recent data is usually assigned a greater weight than older data, so WMA is more responsive to shifts in the level of sales. However, forecast bias and systematic errors occur when the product sales history exhibits strong trends or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. The number of periods of sales history (n) to use in the forecast calculation. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. Such a value results in a stable forecast, but it is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) responds more quickly to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. The total number of periods for the processing option rdquo14 - periods to includerdquo should not exceed 12 months. The weight that is assigned to each of the historical data periods. The assigned weights must total 1.00. For example, when n 4, assign weights of 0.50, 0.25, 0.15, and 0.10 with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals (131 times 0.10) (114 times 0.15) (119 times 0.25) (137 times 0.50) (0.10 0.15 0.25 0.50) 128.45 rounded to 128. February forecast equals (114 times 0.10) (119 times 0.15) (137 times 0.25) (128 times 0.50) 1 127.5 rounded to 128. March forecast equals (119 times 0.10) (137 times 0.15) (128 times 0.25) (128 times 0.50) 1 128.45 rounded to 128. 3.2.10 Method 10: Linear Smoothing This method calculates a weighted average of past sales data. In the calculation, this method uses the number of periods of sales order history (from 1 to 12) that is indicated in the processing option. The system uses a mathematical progression to weigh data in the range from the first (least weight) to the final (most weight). Then the system projects this information to each period in the forecast. This method requires the months best fit plus the sales order history for the number of periods that are specified in the processing option. 3.2.10.1 Example: Method 10: Linear Smoothing This method is similar to Method 9, WMA. However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. Like all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. n equals the number of periods of sales history to use in the forecast calculation. For example, specify n equals 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. The system automatically assigns the weights to the historical data that decline linearly and sum to 1.00. For example, when n equals 4, the system assigns weights of 0.4, 0.3, 0.2, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.11 Method 11: Exponential Smoothing This method calculates a smoothed average, which becomes an estimate representing the general level of sales over the selected historical data periods. This method requires sales data history for the time period that is represented by the number of periods best fit plus the number of historical data periods that are specified. The minimum requirement is two historical data periods. This method is useful to forecast demand when no linear trend is in the data. 3.2.11.1 Example: Method 11: Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing, the system assigns weights that decline linearly to the historical data. In Exponential Smoothing, the system assigns weights that exponentially decay. The equation for Exponential Smoothing forecasting is: Forecast alpha (Previous Actual Sales) (1 ndashalpha) (Previous Forecast) The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. Alpha is the weight that is applied to the actual sales for the previous period. (1 ndash alpha) is the weight that is applied to the forecast for the previous period. Values for alpha range from 0 to 1 and usually fall between 0.1 and 0.4. The sum of the weights is 1.00 (alpha (1 ndash alpha) 1). You should assign a value for the smoothing constant, alpha. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Moving Average Forecasting Introduction. As you might guess we are looking at some of the most primitive approaches to forecasting. But hopefully these are at least a worthwhile introduction to some of the computing issues related to implementing forecasts in spreadsheets. In this vein we will continue by starting at the beginning and start working with Moving Average forecasts. Moving Average Forecasts . Everyone is familiar with moving average forecasts regardless of whether they believe they are. All college students do them all the time. Think about your test scores in a course where you are going to have four tests during the semester. Lets assume you got an 85 on your first test. What would you predict for your second test score What do you think your teacher would predict for your next test score What do you think your friends might predict for your next test score What do you think your parents might predict for your next test score Regardless of all the blabbing you might do to your friends and parents, they and your teacher are very likely to expect you to get something in the area of the 85 you just got. Well, now lets assume that in spite of your self-promotion to your friends, you over-estimate yourself and figure you can study less for the second test and so you get a 73. Now what are all of the concerned and unconcerned going to anticipate you will get on your third test There are two very likely approaches for them to develop an estimate regardless of whether they will share it with you. They may say to themselves, quotThis guy is always blowing smoke about his smarts. Hes going to get another 73 if hes lucky. Maybe the parents will try to be more supportive and say, quotWell, so far youve gotten an 85 and a 73, so maybe you should figure on getting about a (85 73)2 79. I dont know, maybe if you did less partying and werent wagging the weasel all over the place and if you started doing a lot more studying you could get a higher score. quot Both of these estimates are actually moving average forecasts. The first is using only your most recent score to forecast your future performance. This is called a moving average forecast using one period of data. The second is also a moving average forecast but using two periods of data. Lets assume that all these people busting on your great mind have sort of pissed you off and you decide to do well on the third test for your own reasons and to put a higher score in front of your quotalliesquot. You take the test and your score is actually an 89 Everyone, including yourself, is impressed. So now you have the final test of the semester coming up and as usual you feel the need to goad everyone into making their predictions about how youll do on the last test. Well, hopefully you see the pattern. Now, hopefully you can see the pattern. Which do you believe is the most accurate Whistle While We Work. Now we return to our new cleaning company started by your estranged half sister called Whistle While We Work . You have some past sales data represented by the following section from a spreadsheet. We first present the data for a three period moving average forecast. The entry for cell C6 should be Now you can copy this cell formula down to the other cells C7 through C11. Notice how the average moves over the most recent historical data but uses exactly the three most recent periods available for each prediction. You should also notice that we dont really need to make the predictions for the past periods in order to develop our most recent prediction. This is definitely different from the exponential smoothing model. Ive included the quotpast predictionsquot because we will use them in the next web page to measure prediction validity. Now I want to present the analogous results for a two period moving average forecast . The entry for cell C5 should be Now you can copy this cell formula down to the other cells C6 through C11. Notice how now only the two most recent pieces of historical data are used for each prediction. Again I have included the quotpast predictionsquot for illustrative purposes and for later use in forecast validation. Some other things that are of importance to notice. For an m-period moving average forecast only the m most recent data values are used to make the prediction. Nothing else is necessary. For an m-period moving average forecast, when making quotpast predictionsquot, notice that the first prediction occurs in period m 1. Both of these issues will be very significant when we develop our code. Developing the Moving Average Function. Now we need to develop the code for the moving average forecast that can be used more flexibly. The code follows. Notice that the inputs are for the number of periods you want to use in the forecast and the array of historical values. You can store it in whatever workbook you want. Function MovingAverage(Historical, NumberOfPeriods) As Single Declaring and initializing variables Dim Item As Variant Dim Counter As Integer Dim Accumulation As Single Dim HistoricalSize As Integer Initializing variables Counter 1 Accumulation 0 Determining the size of Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Accumulating the appropriate number of most recent previously observed values Accumulation Accumulation Historical(HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods The code will be explained in class. You want to position the function on the spreadsheet so that the result of the computation appears where it should like the following. When computing a running moving average, placing the average in the middle time period makes sense In the previous example we computed the average of the first 3 time periods and placed it next to period 3. We could have placed the average in the middle of the time interval of three periods, that is, next to period 2. This works well with odd time periods, but not so good for even time periods. Więc gdzie umieścimy pierwszą średnią ruchową, jeśli M 4 Technicznie, średnia ruchoma spadnie poniżej 2,5, 3,5. To avoid this problem we smooth the MAs using M 2. Thus we smooth the smoothed values If we average an even number of terms, we need to smooth the smoothed values The following table shows the results using M 4.

No comments:

Post a Comment